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Abstract

We present a new class of explicit marching schemes for the wave equation in complex geometry. They rely on a simple

embedding of the domain in a uniformCartesian grid, which allows for efficient and automatic implementation but creates

irregular cells near the boundary. While existing explicit finite difference schemes are generally restricted in the size of the

time step that can be taken by the dimensions of the smallest cell, the schemes described here are capable of taking time

steps dictated by the uniform grid spacing. This should be of significant benefit in a wide variety of simulation efforts.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Many problems in electromagnetics, optics, and acoustics require the solution of the time-dependent

wave equation in complex geometry. While frequency domain techniques are often both accurate and ef-

ficient, they tend to become inefficient when transient behavior needs to be resolved. Moreover, the Fourier

transform which maps from the time to the frequency domain is of questionable utility in the presence of

material inhomogeneities and non-linearities. In the present paper, we limit our discussion to the isotropic,

homogeneous case, but we expect that the underlying notion of constructing stable marching schemes can
be extended to more complicated governing equations.

We are particularly interested in designing numerical marching schemes that are applicable on Cartesian

grids with embedded boundaries as discussed, for example, in [1,2]. These have a number of advantages
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over body fitted grids in terms of efficiency, memory consumption, automation, mesh refinement, and

convergence analysis. In complicated domains, however, small cells are created wherever the irregular

boundary intersects the Cartesian grid. Classical stability analysis [16,17] suggests that the the size of the
time step is dependent on the size of the smallest cell in the spatial discretization, rendering such schemes

impractical unless some additional techniques are introduced to overcome this restriction. More precisely,

we would like to allow time steps on the order of the size of the uniform cells in the grid away from the

domain boundary.

Existing approaches to this ‘‘small cell’’ problem include cell merging (see, e.g. [6,15]), large time step

generalizations of Godunov�s method [12], and the rotated grid h-box method [5]. In cell merging, one

removes small cells near the boundary, which tends to result in a loss of accuracy there. In the generalized

Godunov and h-box methods, one keeps the small cells, enlarging the numerical domain of dependence
near the small cells in some way. These schemes have not been carried out to high order accuracy. Recent

work on Maxwell�s equations [7] has demonstrated the feasibility of obtaining second order accuracy using

ideas that are somewhat related to those discussed here. Even more closely related is the second order

accurate method for the scalar wave equation found in [11]. Nevertheless, for large scale wave propagation

problems, high precision is critical to avoid numerical dispersion errors. Hence, there is room for significant

improvement in the performance of numerical methods in terms of order of accuracy.

In this paper we show experimentally that high order schemes in complex geometry are feasible in two

space dimensions. These schemes follow the work of [3,13], which introduced a new approach to marching
in time that appears to be remarkably insensitive to the presence of small cells. These are three time level

schemes, based on an exact evolution formula for wave propagation. Section 2 describes the original

evolution formula of [3], while Sections 3–5 provide the essential details of the implementation. Section 6

summarizes the results of our numerical experiments, and Section 7 contains our conclusions. It is worth

emphasizing that we have no formal results concerning stability. We hope that the analytic formalism

presented here leads to a direct proof of convergence.

An independent approach, also motivated by [3] is described in [18]. Rather than relying on quadrature,

the authors of the latter paper derive marching schemes from a Lax–Wendroff finite difference formulation
and enforce stability as a condition on the local stencil itself. Finally, we restrict our attention here to

interior problems. Exterior problems require non-reflecting boundary conditions which can be imposed on

a disk, using the technique of [4], or in general domains, using the recently-developed fast plane-wave time-

domain schemes [8,10,14].
2. Exact integral evolution formula

It was shown in [3] that if uðx; tÞ is a solution to the homogeneous wave equation

utt ¼ r2u; ð1Þ

in Rd , then there exists a kernel Gdðr; sÞ such that

uðx; t þ sÞ ¼ 2uðx; tÞ � uðx; t � sÞ þ
Z
BsðxÞ

Gdðjx� nj; sÞ r2uðn; tÞdn; ð2Þ

where BsðxÞ ¼ fn; jn� xj6 sg denotes the closed ball in Rd of radius s centered at x. Moreover,

G1ðr; sÞ ¼ s� r; ð3Þ
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G2ðr; sÞ ¼
lnðsþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � r2

p
Þ � ln r

p
; ð4Þ
G3ðr; sÞ ¼
1

2pr
: ð5Þ

We will use the exact formula (2) to construct a class of explicit three time level schemes to solve (1). In

particular we modify (2) to solve (1) in a bounded domain D subject to either Dirichlet conditions

uðx; tÞ ¼ gðx; tÞ; ð6Þ

or Neumann conditions

ou
om

¼ hðx; tÞ ð7Þ

on the boundary oD, where m is the unit outward normal. We begin by restricting the region of integration

in the formula (2) to define ~uðx; t þ sÞ:

~uðx; t þ sÞ :¼ 2uðx; tÞ � uðx; t � sÞ þ
Z
BsðxÞ

T
D

Gdðjx� nj; sÞ r2uðn; tÞdn: ð8Þ

It is easy to verify that ~u satisfies the wave equation for s > 0. As a result, the function W given by

Wðx; t þ sÞ :¼ uðx; t þ sÞ � ~uðx; t þ sÞ; x 2 D;

also satisfies the wave equation and takes on zero initial data. Suppose now that one wants to impose the
boundary condition given by (6). Then we must have

Wðx; t þ sÞ ¼ gðx; t þ sÞ � ~uðx; t þ sÞ; x 2 oD: ð9Þ

Similarly, if the boundary condition (7) is to be satisfied, we must have

oW
om

ðx; t þ sÞ ¼ hðx; t þ sÞ � o~u
om

ðx; t þ sÞ; x 2 oD: ð10Þ

In either case, the wave equation for W can be solved using hyperbolic potential theory [9]. For short

times s, this involves a local boundary integral equation for which the cost is negligible.
In one space dimension, the solution is available analytically. Assuming that we are working on an

interval ½a; b� with a < x � b, an elementary calculation shows that for the boundary condition in (6)

Wðx; t þ sÞ ¼ 0 if x� aP s;
gða; t þ s� xþ aÞ � ~uða; t þ s� xþ aÞ if x� a6 s:

�
ð11Þ

For the boundary condition in (7),
Wðx; t þ sÞ ¼
0 if x� aP s;

�
R x�a
s hða; t þ s� nÞ � o~u

om ða; t þ s� nÞ
� �

dn if x� a6 s:

(
ð12Þ

A similar formula applies near the right boundary point x ¼ b.
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In two dimensions, with the boundary conditions given by (6), we represent the solution as a double-

layer potential:

Wðx; t þ sÞ ¼ D½l�ðx; sÞ :¼
Z s

0

Z
nðcÞ2oD

o

omðcÞGðkx� nðcÞk; s� s0Þlðc; s0Þdcds0; ð13Þ

for x 2 D, where Gðr; sÞ is the free-space Green�s function

Gðr; sÞ ¼ 0 if r > s;
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � r2

p
if r < s;

�

c is some parameterization of oD, mðcÞ is the unit outward normal at nðcÞ, and lðc; s0Þ is the unknown

double-layer density. Taking the limit as x approaches a point nðc0Þ on the boundary, a standard com-
putation [9] yields the relation

Wðnðc0Þ; t þ sÞ ¼ � 1

2
lðc0; sÞ þ

Z s

0

Z
nðcÞ2oD

o

omðcÞGðknðc
0Þ � nðcÞk; s� s0Þlðc; s0Þdcds0: ð14Þ

Thus, the density l is obtained by solving the following integral equation on the boundary:

� 1

2
lðc0; sÞ þ D0½l�ðc0; sÞ ¼ gðnðc0Þ; t þ sÞ � ~uðnðc0Þ; t þ sÞ; ð15Þ

where the compact boundary integral operator is

D0½l�ðc0; sÞ :¼
Z s

0

Z
nðcÞ2oD

o

omðcÞGðknðc
0Þ � nðcÞk; s� s0Þlðc; s0Þdcds0: ð16Þ

If the boundary conditions are given by (7), we represent the solution in the form of a single-layer

potential:

Wðx; t þ sÞ ¼ S½r�ðx; sÞ :¼
Z s

0

Z
nðcÞ2oD

Gðkx� nðcÞk; s� s0Þrðc; s0Þdcds0; ð17Þ

for x 2 D, where rðc; s0Þ is an unknown single-layer density. Taking the appropriate limits, the density r
must solve the following integral equation on the boundary:

1

2
rðc0; sÞ þ K0½r�ðc0; sÞ ¼ hðnðc0Þ; t þ sÞ � o~u

om
ðnðc0Þ; t þ sÞ; ð18Þ

where the compact boundary integral operator is

K0½r�ðc0; sÞ :¼
Z s

0

Z
nðcÞ2oD

o

omðc0ÞGðknðc
0Þ � nðcÞk; s� s0Þrðc; s0Þdcds0:
Definition 2.1. We refer to the function Wðx; t þ sÞ as the boundary correction.

Our numerical approach to solving the wave Eq. (1) in the presence of a boundary is straightforward. At

every time step, we discretize (8), march ~u forward in time, and add the boundary correction Wðx; t þ sÞ.
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Remark 2.1. For the sake of simplicity, we assume uðx; 0Þ and uðx;DtÞ are given, ignoring ‘‘startup issues’’

for the three level scheme.
3. Discretization

Let the domain D be contained within the square region ½a; b� � ½a; b� on which we have imposed an

ðN þ 1Þ � ðN þ 1Þ uniform Cartesian grid

ðxi; yjÞ ¼ ðaþ ih; bþ jhÞ;

with h ¼ ðb� aÞ=N . If the grid point ðxi; yjÞ 2 D, it is referred to as an interior grid point. Otherwise it is

referred to as an exterior grid point. We assume that the boundary is smooth and that it is provided as a

sequence of L points n1; . . . ; nL which we refer to as boundary points. For the sake of simplicity, we require

that the boundary point separation is at least as fine as the underlying volume grid (the arc length between

ni and niþ1 is at most h).
Definition 3.1. We denote by Un
i;j the value of the approximate solution at the grid point ðxi; yjÞ at time

tn :¼ nDt.

As indicated in Remark 2.1 above, we assume that U 0
i;j and U 1

i;j are given for all interior grid points.

The values on the right hand side of (8) are required for all interior grid points. In order to compute the

integral at the next time step, the function r2u at the current time is required in the region of integration
BsðxÞ

T
D. We go further and approximate u at the current time as a function in the entire domain D and

then take its analytical Laplacian. This function is a piecewise polynomial function obtained from inter-

polating the computed solution U at the current time. The pieces of this function are defined on subregions

of D of the following form:

Di;j :¼ Ci;j

\
D;

where Ci;j is the square subdomain

Ci;j :¼ xi; xiþ1½ � � yj; yjþ1

� �
:

We refer to Di;j as a cell. If Di;j ¼ Ci;j, then Di;j is called a regular cell. If Di;j is empty, we ignore it. If Di;j is

neither regular nor empty, it is an irregular cell.

On each cell, we use bivariate polynomial basis functions and denote the representation on Di;j by

Un
i;jðx; yÞ. The polynomial Un

i;jðx; yÞ is obtained by fitting, in a least squares sense, a subset of the current data

at points in or near Di;j. To be more precise, let p be the desired spatial approximation order. We then
assume Un

i;jðx; yÞ has the form:

Un
i;jðx; yÞ :¼

X
kþl6 p

ak;lxkyl: ð19Þ

The number of unknown coefficients ak;l is ðp þ 2Þðp þ 1Þ=2. We then look for a set of points around the

cell Di;j at which to evaluate (19) to set up the least squares problem.

We denote by Ri;j the set of interpolation points (also called an interpolation configuration) and let Ri;j

consists of Q grid points and F boundary points. We require that Ri;j satisfies the following three conditions:
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(1) All grid points contained in Ri;j must be interior grid points.

(2) There are more data points than unknowns in the least squares problem, that is

Qþ F P ðp þ 2Þðp þ 1Þ=2: ð20Þ

(3) There are sufficiently many points in each linear dimension to allow interpolation of order p in that

dimension.
Let us consider the easiest case first, where the cell Di;j is not only regular (Di;j ¼ Ci;j) but far from the

boundary. We will assume that Di;j is sufficiently far away from the boundary so that all the grid points

contained in the rectangular lattice Li;j :¼ fðxk; ymÞ j k ¼ k0; . . . ; i; iþ 1; . . ., kf ;m ¼ m0; . . . ; j, jþ 1; . . . ;mfg
are interior grid points, where the dimensions of the lattice satisfies two conditions:

ðkf � k0 þ 1Þðmf � m0 þ 1ÞP ðp þ 2Þðp þ 1Þ=2 and ðkf � k0ÞP p, ðmf � m0ÞP p. For such Di;j and Li;j, Li;j

is an acceptable interpolation configuration for Di;j because it satisfies conditions 1–3.

Definition 3.2. We call the lattice Li;j a regular interpolation configuration. If Di;j uses Li;j as the set of

interpolation points, it is an interpolation-regular cell. If the interpolation set for Di;j is not Li;j, then Di;j is

an interpolation-irregular cell.

In Fig. 1, for example, to produce a third order bivariate polynomial approximation on cell 4 around the

point r, the set of interpolation points is the lattice Li;j with k0 ¼ i� 1; kf ¼ iþ 1;m0 ¼ j� 1;mf ¼ jþ 1.
Fig. 1. A domain D is superimposed on a Cartesian mesh. The points r and q are interior grid points whose domains of dependence X
for Dt ¼ h are outlined by dashed circles. The computation of ~uðr; t þ sÞ and ~uðq; t þ sÞ requires integration over the intersection of X
with four cells labeled 1, 2, 3, and 4. For the point r all four cells are regular in shape. If we interpolate the approximate solution as a

third order bivariate polynomial in each cell, 16 points on a 4� 4 lattice around the cell are used whenever possible and this con-

figuration is called a regular interpolation configuration. The interpolation configuration for cell 4 around the point r is regular and is

shown. It can be seen that all four cells around r have regular interpolation configurations. Hence the stencil for r is regular and is the

same as for all other interior grid points sufficiently far from the boundary. On the other hand, for the point q, cells 2 and 3 are regular

in shape whereas cells 1 and 4 are irregular in shape. The 4� 4 lattice around cell 4 contains points outside of the domain and cannot be

used in interpolation. The set of interpolation points used for this cell is irregular and contains 13 interior grid points (six solid disks

and seven shaded disks) and five boundary points (shaded diamonds). It can be seen that the 4� 4 lattices around cells 1, 2, and 3 also

contain grid points outside of the boundary; hence, these cells will also have irregular interpolation configurations.
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They are shown as solid disks around cell 4 (the lower left corner point of cell 4 being ðxi; yjÞ). In this case,

cell 4 is interpolation-regular for third order interpolation.

For cells nearer the boundary, the lattice Li;j will contain grid points which are not interior and hence
cannot be used. In order to have sufficiently many points for interpolation, we include in the interpolation

configuration the boundary points nj which are within the convex hull of the lattice ½xk0 ; xkf � � ½ym0
; ymf �. If

the conditions 2–3 are still not satisfied, we systematically enlarge the region by decrementing k0;m0 and

incrementing kf ;mf until they are.

In Fig. 1, for example, additional interpolation points for cell 4 near the point q are indicated by the

shaded circles on the volume grid and shaded diamonds on the boundary. Thus, this cell is interpolation-

irregular. For each interior grid point, the integral in (8) is computed for each of the four cells bordering it,

which may be shape-irregular as well as interpolation-irregular. The integral for irregular cells requires
more computation than for regular cells.

Remark 3.1. Cell averaging: Once the polynomial function Un
i;jðx; yÞ is created for each cell, we define a

single valued function Unðx; yÞ on all of D. If ðx; yÞ lies in the interior of a cell Ci;j, then Unðx; yÞ ¼ Un
i;jðx; yÞ.

If ðx; yÞ lies on an edge between cells Ci;j and Ci0 ;j0 , then Unðx; yÞ ¼ 1
2
½Un

i;jðx; yÞ þ Un
i0 ;j0 ðx; yÞ�. If ðx; yÞ lies at a

corner between cells Ci;j, Ciþ1;j, Ci;jþ1, Ciþ1;jþ1, then Unðx; yÞ ¼ 1
4
½Un

i;jðx; yÞ þ Un
iþ1;jðx; yÞþ Un

i;jþ1ðx; yÞþ
Un

iþ1;jþ1ðx; yÞ�.
4. Algorithm

Although we do not have a complete specification of all the necessary tools at this point, an outline of

the algorithm will serve to focus the subsequent discussion.

For time step n ¼ 1; . . .
1. From the current data fUn

i;jg compute a bivariate piecewise polynomial interpolant UnðxÞ ¼ Unðx; yÞ.
2. Differentiate UnðxÞ analytically to obtain r2UnðxÞ.
3. Evolve the solution for one time step s ¼ Dt according to formula (8) as follows:

Unþ1
i;j :¼ 2Unðxi; yjÞ � Un�1ðxi; yjÞ þ

Z
Bsðxi ;yjÞ

T
D

Gdðjðxi; yjÞ � nj; sÞ r2UnðnÞdn: ð21Þ

The integral in (21) can be carried out analytically or by quadrature.
4. For boundary value problems, the boundary correction term must be included.

Unþ1
i;j :¼ Unþ1

i;j þWðxi; yj; tnþ1Þ:

4.1.For Dirichlet conditions, solve the integral Eq. (15) and add in W given by (13).
4.2.For Neumann conditions, solve the integral Eq. (18) and add in W given by (17).
Remark 4.1. Breaking time symmetry: Note that the first two quantities on the right hand side of the
discrete evolution formula (21) are cell-averaged interpolants, according to Remark 3.1. We referred to this

as strong u-consistency in our previous paper [13]. This averaging procedure breaks time-symmetry in the

evolution formula and, by smoothing, acts like a low-pass filter. (A similar observation is made in [18].)

This notion is supported by numerical experiments because a variety of schemes which are stable when

Unðxi; yjÞ is used are not stable if the (unaveraged) grid value Un
i;j is used. In this paper, we only give nu-

merical results for schemes which use the averaging procedure.
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Remark 4.2. The integralZ
Bsðxi ;yjÞ

T
D

Gdðjðxi; yjÞ � nj; sÞ r2UnðnÞdn; ð22Þ

in (21) is computed in four pieces. Since Dt ¼ h, the domain of integration (Bsðxi; yjÞ
T
D) is the union of the

four subdomains fBsðxi; yjÞ
T
Di;j, Bsðxi; yjÞ

T
Di�1;j, Bsðxi; yjÞ

T
Di;j�1, Bsðxi; yjÞ

T
Di�1;j�1g. For a given

polynomial basis function, this integral is exactly the same for all regular shaped cells but is different for
each irregular shaped cell near the boundary. We pre-compute and store these integrals for each needed

polynomial basis function.
5. The boundary correction step

We turn now to a discussion of the integral Eq. (15) for Dirichlet boundary conditions. Since the

boundary oD is sufficiently smooth, we assume it is parameterized by the differentiable function
nðcÞ : ½a; b� ! oD with L boundary discretization points fnlg ¼ nðclÞ. We divide the boundary into L seg-

ments, centered at successive points fnl ¼ nðclÞg. More precisely, we let

Il ¼ cl

�
� 1

2
ðcl � cl�1Þ; cl þ

1

2
ðclþ1 � clÞ

�
:

(Indexing, of course, is done modulo L since the boundary is periodic.) On the segment Il we assume

lðc; sÞ is a bivariate polynomial of order q in c and s,

llðc; sÞ :¼
X

p1þp2 6 q

ap1;p2ðc� clÞ
p1sp2 : ð23Þ

We choose the unknowns to be the values lk
l :¼ lðcl; skÞ, l ¼ 1; . . . ;L, k ¼ 0; . . . ;K, where sk ¼ k s

K. From

these, we fit the polynomial in (23) using lk
m, m ¼ l0; . . . ; l; lþ 1; . . . ; lf , with ðlf � l0 þ 1Þ ¼ qþ 1, and

k ¼ 0; . . . ; q.
With the preceding formulation in mind, it is straightforward but tedious to compute all integrals in (15)

either analytically or by quadrature for all piecewise polynomial basis functions describing the double layer

density l.
Since the integral equation is of the second kind, it is well-suited for iterative solution. In fact, it can be

shown [9] that the norm of the double layer operator D0 given in (16) is of the order OðsÞ ¼ OðDtÞ. Thus q
terms in the Neumann series (fixed point iteration) yields an error of the order OðDtqþ1Þ.

Neumann conditions are handled in a similar fashion.
6. Numerical results

The numerical results of this section came from running the numerical schemes described in the previous

sections in four geometries: a disk, an ellipse, and two non-convex shapes named ‘‘blob1’’ and ‘‘blob2’’. The
latter two are parameterized by

xðcÞ ¼ 0:87 cosð2pcÞ;
yðcÞ ¼ 0:87 sinð2pcÞ 1ð � bþ b sinð20pcÞÞ;
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where b ¼ 0:1 for ‘‘blob1’’ and b ¼ 0:3 for ‘‘blob2’’. These four shapes are shown in Figs. 2 and 3. Fig. 2

shows the cells cut by the boundary which are irregular in shape (40� 40 mesh). Fig. 3 shows the cells

which are interpolation-irregular. (The regular configuration is a 6� 6 lattice used to interpolate a fourth
degree bivariate polynomial.) The irregular cells require special treatment and contribute to the irregularity

of the stencils at points near the boundary.

A convergence study was performed using the four geometries and a variety of test functions, including

sinðaxþ by �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
tÞ, ðaxþ by �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
tÞm, logðjaxþ by �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
tjÞ, and eaxþby�

ffiffiffiffiffiffiffiffiffi
a2þb2

p
t. We show in

Figs. 4 and 5 the approximation errors (at t ¼ 2) using schemes based on second, fourth, and sixth order

bivariate polynomial approximations in the volume as well as on the boundary. For the function

sinðxþ y �
ffiffiffi
2

p
tÞ in Fig. 4, the orders of accuracy of the three schemes are 2, 4, and 6, respectively, as

expected. The erratic convergence of the sixth order scheme in the ‘‘blob1’’ geometry seems to warrant
explanation. We suspect that there is some mild instability which arises when the boundary is insufficiently

sampled compared with the underlying volume grid. In our algorithm, we place just enough boundary

points uniformly (in arc length) around the boundary so that the arc length between successive points is

approximately (and no larger than) the spacings Dx and Dy in the volume discretization. Thus, a boundary

with a larger arc length will automatically have a finer boundary discretization. For example, in the case of
Fig. 2. Cells cut by the boundary are called shape-irregular and are shaded in the 40� 40 meshes shown.



Fig. 3. For fourth order accuracy, the regular interpolation configuration is a 6� 6 lattice. As a result, a number of cells (shaded) near

the boundary are obliged to use an irregular set of interpolation points.
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the erratically behaved data point for ‘‘blob1’’, the volume discretization was 160� 160. The shape ‘‘blob1’’

required 697 boundary points, the more concave shape ‘‘blob2’’ required 1422 boundary points, and the

circle and the ellipse required 438 and 483, respectively. We believe the fact that ‘‘blob2’’ exhibited the

expected convergence behavior at this volume discretization while ‘‘blob1’’, which would have been ex-

pected to be a better-behaved example, did not is due to the fact that ‘‘blob2’’ had more than twice the

number of discretization points on the boundary. We tried adding a small number of additional boundary

points to ‘‘blob1’’ to improve the behavior of this particular data point, but were not successful. We believe
that adding a very large number of boundary points is not called for in this case. Rather, refining the

volume grid is the better answer. As can be seen, the behavior of ‘‘blob1’’ at the next finer level of dis-

cretization is as expected.

It can also be seen that errors stop decreasing at an L1 error of approximately 1e� 6. We attribute this

to the severe ill-conditioning associated with our high order two-dimensional polynomial interpolation on a

uniformly spaced lattice of points.

For the exponential function in Fig. 5 the orders of accuracy of the three schemes are also approximately

2, 4, and 6, respectively.
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The numerical results for test functions ðaxþ by �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
tÞm, m ¼ 7, and logðjaxþ by �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
tjÞ

are similar to the sine and exponential test functions. For the sake of brevity we do not include them here.

To test the schemes against a weak instability which becomes apparent only after a very large number of

time steps, we ran the fourth order scheme on the test function u ¼ sin 2pðxþ y �
ffiffiffi
2

p
tÞ (because it oscillates
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tÞ in a variety of geometries. The data points correspond to meshes of dimension 20� 20, 40� 40, 80� 80, 160� 160, and

320� 320.
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indefinitely) until t ¼ 100. This corresponds to 16,000 time steps in the finest spatial discretization. The

numerical results are plotted in Fig. 6. An instability occurred on the disk at the spatial discretization

160� 160 which disappeared at the next finer discretization. In all the other three geometries, the scheme

remained stable and converged with fourth order accuracy.
Fig. 7. A Gaussian (in time) source at the origin is turned quickly on and off before time 0 to give this initial data.



Fig. 8. Solution in a disk from the initial data in Fig. 7 subject to zero Dirichlet boundary conditions. A fourth order accurate scheme

and an 320� 320 mesh were used.

Fig. 9. Solution in an ellipse from the initial data in Fig. 7 subject to zero Dirichlet boundary conditions. A fourth order accurate

scheme and an 320� 320 mesh were used.
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Finally, we ran the fourth order accurate scheme in the four test geometries using the initial data shown

in Fig. 7, subject to zero Dirichlet boundary conditions. The profile in Fig. 7 is obtained by evaluating the

function:

uðx; tÞ ¼
Z t

�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � sÞ2 � jxj2

q e�ðs�s0Þ2=r ds; ð24Þ

at t ¼ 0. We evaluate formula (24) at t ¼ Dt also in order to initialize the marching scheme. The formula

corresponds to a Dirac d-function source at the origin. By choosing s0 < 0 and r sufficiently small, the

source is effectively shut off by the time t ¼ 0 and uðx; tÞ satisfies the homogeneous wave equation with an



Fig. 10. Solution in the non-convex shape ‘‘blob1’’ from the initial data in Fig. 7 subject to zero Dirichlet boundary conditions. A

fourth order accurate scheme and an 320� 320 mesh were used.

Fig. 11. Solution in the non-convex shape ‘‘blob2’’ from the initial data in Fig. 7 subject to zero Dirichlet boundary conditions. A

fourth order accurate scheme and an 320� 320 mesh were used.
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exponentially small error. At later times, since we enforce zero Dirichlet conditions on the domain

boundary oD, the computed solution is of course no longer equal to the wave function (24).

Figs. 8–11 show the results of the simulation in the four geometries at t ¼ 1 and 4. The volume dis-

cretization used was 320� 320 and the number of boundary points for the four geometries are 875(circle),

966(ellipse), 1394(‘‘blob1’’), and 2844(‘‘blob2’’).
7. Conclusions

We have presented a new explicit numerical method for time-domain wave propagation in two di-

mensions. The method is based on an exact integral evolution formula [3]. Unlike most finite difference or
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finite element formulations, it appears to be able to achieve high order accuracy in complex geometry

without the need to take excessively small time steps.
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